
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.412121 517

Review on Domain Specific Bug Triage with

Software Data Reduction Techniques

Supriya B Boraste
 1
, P.B. Koli

 2

M.E Student, Kalyani Charitable Trust’s Late G.N. Sapkal College of Engineering, Nasik, India
 1

Assistant Professor, Kalyani Charitable Trust’s Late G.N. Sapkal College of Engineering, Nasik, India
 2

Abstract: Bugs are very essential aspects in a software company. The process of fixing bugs is called as a bug triage.

Bug triage is an unavoidable step in a software company. In bug triage a correct developer is given to a new bug for

fixing it. To manually perform the bug triage is very costly and even time consuming. So text classification techniques

are used which uses automatic bug triage. There is a problem of large data i.e the data should be reduced and the

quality of the data should be increased. To perform this instance selection and feature selection are used

simultaneously. For this we should know the order for applying instance selection and feature selection, and to know

the order we extract the attributes from the bug data sets. For the experiments we are using two open source projects

such as eclipse and Mozilla. And our result shows that the data is reduced with high quality bug data sets.

Keywords: Mining Bug repositories, bug data reduction, attribute extraction, instance and feature selection.

I. INTRODUCTION

In current software expansion, software repositories are

large databases for storing the output of software

development. Repositories consist of source code, emails,

bugs and specification. To manually perform the bug

triage is very costly and even time consuming. bug triage.

Software projects in a company consist of bug repositories

which consist of bug data and it helps developers to

handle bug. Updates according to the status of bug fixing.

There are two challenges associated to bug data that may

influence the effectual use of bug repositories they are

huge scale and the low quality of data. Two typical

characteristics of low-quality bugs are noise and

redundancy. Both of these characteristics affect the bug

triage process. So in this paper the two major issues are

the large data and low quality. This two issue need to be

solved to facilitate the bug handling process. In our work,

we combine existing techniques of instance selection and

feature selection to simultaneously reduce the bug

dimension and the word dimension which improves the

quality of the bug data.

II. LITERATURE SURVEY

1)“Bug report networks: Varieties, strategies, and impacts

in an F/OSS development community,” R. J. Sandusky, L.

Gasser, and G. Ripoche, May 2004, To investigate the

relationships in bug data, form a bug report network to

examine the dependency among bug reports.

2) “Understanding a developer social network and its

evolution,” Q. Hong, S. Kim, S. C. Cheung, and C. Bird,

Sep. 2011, Besides studying relationships among bug

reports, build a developer social network to examine the

collaboration among developers based on the bug data in

Mozilla project. This developer social network is helpful

to understand the developer community and the project

evolution.

3) J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer

prioritization in bug repositories,” 2012, in Proc. 34th Int.

Conf. Softw. Eng., By mapping bug priorities to

developers, identify the developer prioritization in open

source bug repositories. The developer prioritization can

distinguish developers and assist tasks in software

maintenance.

4) T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A.

Schr€oter, and C. Weiss, “What makes a good bug

report?”, Oct. 2010, IEEE Trans. Softw. Eng., To

investigate the quality of bug data, design questionnaires

to developers and users in three open source projects.

Based on the analysis of questionnaires, they characterize

what makes a good bug report and train a classifier to

identify whether the quality of a bug report should be

improved.

5)X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An

approach to detecting duplicate bug reports using natural

language and execution information,” in Proc. 30th Int.

Conf. Softw. Eng., May 2008, Duplicate bug reports

weaken the quality of bug data by delaying the cost of

handling bugs. To detect duplicate bug reports, they

design a natural language processing approach by

matching the execution information.

6) C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more

accurate retrieval of duplicate bug reports,” in Proc. 26th

IEEE/ACM Int. Conf. Automated Softw. Eng., 2011,

propose a duplicate bug detection approach by optimizing

a retrieval function on multiple features

7) S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Information needs in bug reports: Improving cooperation

between developers and users,” in Proc. ACM Conf.

Comput. Supported Cooperative Work, Feb. 2010, To

improve the quality of bug reports, they have manually

analyzed 600 bug reports in open source projects to seek

for ignored information in bug data.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.412121 518

8) J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the

large scale next release problem with a backbone based

multilevel algorithm,” IEEE Trans. Softw. Eng , Sept./Oct.

2012. Based on the comparative analysis on the quality

between bugs and requirements, they transfer bug data to

requirements databases to supplement the lack of open

data in requirements engineering.

9) T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A.

Schr€oter, and C. Weiss, “What makes a good bug

report?”, Oct. 2010, IEEE Trans. Softw. Eng., In contrast

to existing work on studying the characteristics of data

quality, our work can be utilized as a preprocessing

technique for bug triage, which both improves data quality

and reduces data scale.

10) D. _Cubrani_c and G. C. Murphy, “Automatic bug

triage using text categorization,” in Proc. 16th Int. Conf.

Softw. Eng. Knowl. Eng., Jun. 2004, first propose the

problem of automatic bug triage to reduce the cost of

manual bug triage. They apply text classification

techniques to predict related developers.

11) J. Anvik, L. Hiew, and G. C. Murphy, “Who should

fix this bug?” in Proc. 28th Int. Conf. Softw. Eng., May

2006, examine multiple techniques on bug triage,

including data preparation and typical classifiers. Anvik

and Murphy extend above work to reduce the effort of bug

triage by creating development-oriented recommenders.

12) G. Jeong, S. Kim, and T. Zimmermann, “Improving

bug triage with tossing graphs,” in Proc. Joint Meeting

12th Eur. Softw. Eng. Conf. 17th ACM SIGSOFT Symp.

Found. Softw. Eng., Aug. 2009, find out that over 37

percent of bug reports have been reassigned in manual bug

triage. They propose a tossing graph method to reduce

reassignment in bug triage.

13) J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

“Automatic bug triage using semi-supervised text

classification,” in Proc. 22nd Int. Conf. Softw. Eng.

Knowl. Eng., Jul. 2010, To avoid low-quality bug reports

in bug triage, they train a semi-supervised classifier by

combining unlabeled bug reports with labeled ones.

14) J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S.

Kim, “Costriage: A cost-aware triage algorithm for bug

reporting systems,” in Proc. 25th Conf. Artif. Intell., Aug.

2011, convert bug triage into an optimization problem and

propose a collaborative filtering approach to reducing the

bugfixing time.

15) H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-

fixing time: An empirical study of commercial software

projects,” in Proc. 35
th

 Int. Conf. Softw. Eng.,May 2013,

models the time cost of bug fixing and predicts the time

cost of given bug reports;

16) E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M.

Ohira, B. Adams, A. E. Hassan, and K. Matsumoto,

“Predicting re-opened bugs: A case study on the eclipse

project,” in Proc. 17th Working Conf. Reverse Eng., Oct.

2010, reopened-bug analysis , they identifies the

incorrectly fixed bug reports to avoid delaying the

software release.

17) T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute

selection and imbalanced data: Problems in software

defect prediction,” in Proc. 22nd IEEE Int. Conf. Tools

Artif. Intell., Oct. 2010, To improve the data quality, they

examine the techniques on feature selection to handle

imbalanced defect data.

18) S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,

“Reducing features to improve code change based bug

prediction,” IEEE Trans. Soft. Eng., vol. 39, no. 4, Apr.

2013, proposes a framework to examine multiple feature

selection algorithms and remove noise features in

classification-based defect prediction.

19) S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with

noise in defect prediction,” in Proc. 32nd ACM/IEEE Int.

Conf. Softw. Eng., May 2010, Besides feature selection in

defect prediction, they present how to measure the noise

eqresistance in defect prediction and how to detect noise

data.

20) M .Grochowski and N. Jankowski, “Comparison of

instance selection algorithms ii, results and comments,” in

Proc. 7th Int. Conf. Artif. Intell. Softw. Comput., Jun.

2004, process the defect data with quad tree based k-

means clustering to assist defect prediction.

III. PROPOSED SYSTEM

To fix the bugs in an software company bug triage process

is used. In this process correct developer is assigned to a

new bug. But manual bug triage process is very time

consuming and costly. So to avoid time cost, automatic

bug triage in which text classification techniques are used.

The problem which is addressed for this is the large bug

dataset. And the large bug dataset affects the quality of the

bug datasets. So to reduce the bug dataset we use feature

selection and instance selection techniques as shown in

block diagram. This techniques reduces the bug data in

both bug and word dimensions. And even we want to

know the order of applying the instance selection and

feature selection for this the attributes of the historical bug

datasets are extracted. This gives us the reduced and

quality bug dataset. Even would like to built the domain

specific system for which the domain relevance class

labels are generated as shown in block diagram.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.412121 519

IV. CONCLUSION

In this paper we propose a approach that reduces the scale

of the data and increases the quality of bug data by using

instance selection and feature selection simultaneously.

And even the prediction order is determined by extracting

the attributes of the bug data sets. We perform the

experiment of the data reduction for bug triage in bug

repositories of two large open source projects such as

Eclipse and Mozilla. Our work provides an technique on

data processing which forms the reduced and high-quality

bug data in software development and maintenance.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”

in Proc. 28th Int. Conf. Softw. Eng., May 2006, pp. 361–370.
[2] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.

D. Ernst, “Finding bugs in web applications using dynamic test

generation and explicit-state model checking,” IEEE Softw., vol.
36, no. 4, pp. 474–494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report

triage: Recommenders for development-oriented decisions,” ACM
Trans. Soft. Eng. Methodol., vol. 20, no. 3, article 10, Aug. 2011.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical models for text

processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp. 1–21, 2013.
[5] K. Balog, L. Azzopardi, and M. de Rijke, “Formal models for

expert finding in enterprise corpora,” in Proc. 29th Annu. Int. ACM

SIGIR Conf. Res. Develop. Inform. Retrieval, Aug. 2006, pp. 43–
50.

[6] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using

quad tree-based k-means clustering algorithm,” IEEE Trans.

Knowl. Data Eng., vol. 24, no. 6, pp. 1146–1150, Jun. 2012.

[7] H. Brighton and C. Mellish, “Advances in instance selection for

instance-based learning algorithms,” Data Mining Knowl.
Discovery, vol. 6, no. 2, pp. 153–172, Apr. 2002.

[8] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information

needs in bug reports: Improving cooperation between developers
and users,” in Proc. ACM Conf. Comput. Supported Cooperative

Work, Feb. 2010, pp. 301–310.

[9] V. Bol_on-Canedo, N. S_anchez-Maro~no, and A. Alonso-
Betanzos, “A review of feature selection methods on synthetic

data,” Knowl. Inform. Syst., vol. 34, no. 3, pp. 483–519, 2013.

[10] V. Cerver_on and F. J. Ferri, “Another move toward the minimum
consistent subset: A tabu search approach to the condensed nearest

neighbor rule,” IEEE Trans. Syst., Man, Cybern., Part B, Cybern.,

vol. 31, no. 3, pp. 408–413, Jun. 2001.
[11] D. _Cubrani_c and G. C. Murphy, “Automatic bug triage using text

categorization,” in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng.,

Jun. 2004, pp. 92–97.

[12] B. Fitzgerald, “The transformation of open source software,” MIS

Quart., vol. 30, no. 3, pp. 587–598, Sep. 2006.

[13] A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient greedy feature
selection for unsupervised learning,” Knowl. Inform. Syst., vol. 35,

no. 2, pp. 285–310, May 2013.

[14] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. Boston, MA, USA: PWS Publishing,

1998.
[15] Y. Freund and R. E. Schapire, “Experiments with a new boosting

algorithm,” in Proc. 13th Int. Conf. Mach. Learn., Jul. 1996, pp.

148– 156.
[16] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active

learning,” Knowl. Inform. Syst., vol. 35, no. 2, pp. 249–283, 2013.

[17] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[18] M. Grochowski and N. Jankowski, “Comparison of instance

selection algorithms ii, results and comments,” in Proc. 7th Int.
Conf. Artif.Intell.Softw.Comput., Jun. 2004, pp. 580–585.

